Resolution Learning in Deep Convolutional Networks Using Scale-Space Theory

نویسندگان

چکیده

Resolution in deep convolutional neural networks (CNNs) is typically bounded by the receptive field size through filter sizes, and subsampling layers or strided convolutions on feature maps. The optimal resolution may vary significantly depending dataset. Modern CNNs hard-code their hyper-parameters network architecture which makes tuning such cumbersome. We propose to do away with hard-coded aim learn appropriate from data. use scale-space theory obtain a self-similar parametrization of filters make N-Jet: truncated Taylor series approximate learned combination Gaussian derivative filters. parameter $\sigma $ basis controls both amount detail encodes spatial extent filter. Since continuous parameter, we can optimize it respect loss. proposed N-Jet layer achieves comparable performance when used state-of-the art architectures, while learning correct each automatically. evaluate our classification segmentation, show that especially beneficial dealing inputs at multiple sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

High-Resolution Deep Convolutional Generative Adversarial Networks

Generative Adversarial Networks (GANs) [7] convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) [14] and achieve good-looking high-resolution results ...

متن کامل

Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

Depth image super-resolution is an extremely challenging task due to the information loss in sub-sampling. Deep convolutional neural network have been widely applied to color image super-resolution. Quite surprisingly, this success has not been matched to depth super-resolution. This is mainly due to the inherent difference between color and depth images. In this paper, we bridge up the gap and...

متن کامل

Skin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks

Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on image processing

سال: 2021

ISSN: ['1057-7149', '1941-0042']

DOI: https://doi.org/10.1109/tip.2021.3115001